مدل‌سازی پیش‌بینی EPS با استفاده از شبکه‌های عصبی - فازی

نویسندگان

1 استاد گروه حسابداری دانشگاه تربیت مدرس

2 استاد گروه مدیریت صنعتی دانشگاه تربیت مدرس

3 کارشناس ارشد مدیریت بازرگانی (مالی) دانشگاه تربیت مدرس

چکیده

پیش‌بینی سود هر سهم و تغییرات آن به‌عنوان یک رویداد اقتصادی از دیرباز موردعلاقه سرمایه‌گذاران، مدیران، تحلیل گران مالی و اعتباردهندگان بوده است. این توجه ناشی از استفاده سود در مدل‌های ارزیابی سهام، کمک به کارکرد کارای بازار سرمایه، ارزیابی توان پرداخت و ارزیابی عملکرد واحد اقتصادی می‌باشد. هدف این تحقیق پیش‌بینی سود هر سهم با استفاده از شبکه عصبی – فازی و شبکه عصبی درک چندلایه(MLP) و GMDH و تعیین مدل برتر با استفاده از چهار معیار مربع میانگین خطای استاندارد(MSE) ، میانگین قدر مطلق خطا (MAE)، مربع مجذور میانگین خطا (RMSE) و (R2) ضریب تعیین می‌باشد. بدین منظور، شرکت‌های پذیرفته‌شده در بورس و اوراق بهادار تهران به‌عنوان جامعه آماری و نمونه انتخابی شامل،500 سال/شرکت در قالب 24 صنعت فعال بورس در دوره زمانی 1390- 1386 می‌باشد که به‌صورت تصادفی و روش نمونه‌گیری خوشه‌ای انتخاب‌شده‌اند. نتایج تحقیق بیانگر برتری شبکه عصبی – فازی در تمامی چهار معیار ارزیابی نسبت به شبکه عصبی MLP و GMDH می‌باشد که نشان از توانایی بالای این شبکه در شناخت الگوهای حاکم برداده‌ها و وجود رابطه غیرخطی برخی متغیرهای حسابداری با سود هر سهم دارد. درنتیجه دقت پیش‌بینی شبکه عصبی – فازی بیشتر از شبکه¬ی MLP و GMDH است و برای پیش‌بینی سود هر سهم مناسب می‌باشد

کلیدواژه‌ها


 
  • انواری رستمی، علی‌اصغر. (1378)، "مدیریت مالی و سرمایه‌گذاری"، تهران: انتشارات طراحان نشر.
  • خدادادی، ولی و رضا جان‌جانی، (1390)،" بررسی رابطه مدیریت سود و سودآوری شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران"،مجله پژوهش‌های حسابداری مالی،ش1، صص۷۷-96.
  • مهام، کیهان، (1379)،" اثر گزارش اجزای سود حسابداری  برافزایش توان پیش‌بینی سود"، پایان‌نامه دکترای رشته حسابداری، دانشگاه علامه طباطبائی.
  • Abarbanell, J.S., & Bushee, B.J.(1997). Fundamental Analysis, Future Earnings, and Stock Prices. Journal of Accounting Research, 35(1),PP. 1-24.
  • Atashkari, K., Nariman-Zadeh, N., Gölcü, M., Khalkhali, A., & Jamali, A. (2007). Modelling and Multi-Objectiveoptimization of a Variable Valve-Timing Spark-ignition Engine Using Polynomial Neural Networks and Evolutionary Algorithms. Energy Conversion and Management, 48(3),PP. 1029-1041.
  • Atsalakis, G.S., Dimitrakakis, E.M., & Zopounidis, C.D. (2011). Elliott Wave Theory and Neuro-Fuzzy Systems, in Stock Market Prediction: The WASP system. Expert Systems With Applications, 38(8), PP.9196-9206.
  • Callen, J.L., Kwan, C.C.Y., Yip, P.C.Y., & Yuan, Y. (1996). Neural Network Forecasting of Quarterly Accounting Earnings. International Journal of Forecasting, 12(4),PP. 475-482.
  • Cao, Q., & Gan, Q. (2009). Forecasting EPS of Chinese Listed Companies Using Neural Network with Genetic Algorithm.
  • Cheng, C.H., Hsu, J.W., & Huang, S.F. (2009). Forecasting Electronic Industry EPS Usingan Integrated ANFIS Model. Paper Presented at the Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on.
  • Graham, B. (1934). Security Analysis. School of Business, Columbia University.  
  • Ivakhnenko, AG, & Müller, J.A. (1995). Present State and new Problems of Further GMDH Development. Systems Analysis Modelling Simulation, 20(1-2),PP. 3-16.
  • Khashei, Mehdi, & Bijari, Mehdi. (2010). A Novel Hybridization of Artificial Neural Networks and ARIMA Models for Time Series Forecasting. Applied Soft Computing.
  • Khatibi, R., Ghorbani, M.A., Kashani, M.H., & Kisi, O. (2011). Comparison of Three Artificial Intelligence Techniques for Discharge Routing. Journal of Hydrology, 403(3),PP. 201-212.
  • Lev, B., & Thiagarajan, S.R. (1993). Fundamental Information Analysis. Journal of Accounting Research,PP. 190-215.
  • Lubis, H.Y., & Director-Donnell, M. (2000). Initial Public Offering Prediction using Neural Network: The George Washington University.
  • Madala, H.R., & Ivakhnenko, A.G. (1994). Inductive Learning Algorithms for Complex Systems Modeling: CRC Press Boca Raton, FL.
  • Malinowski, P., & Ziembicki, P. (2006). Analysis of District Heating Network Monitoring by Neural Networks Classification. Journal of Civil Engineering and Management, 12(1),PP. 21-28.
  • Mantas, CJ, Puche, JM, & Mantas, JM. (2006). Extraction of Similarity basedFuzzy rules Artificial Neural Networks. International Journal of Approximate Reasoning, 43(2),PP. 202-221.
  • McCleary, R., & Hay, R.A. (1980). Applied Time Series Analysis for The Social Sciences: Sage Publications Beverly Hills, CA.
  • Noori, R., Hoshyaripour, G., Ashrafi, K., & Araabi, B.N. (2010). Uncertainty Analysis of Developed ANN and ANFIS models in Prediction of Carbon Monoxide Daily Concentration. Atmospheric Environment, 44,PP.476-482
  • Patterson, Dan W. (1998). Artificial Neural Networks: Theory and Applications: Prentice Hall PTR.
  • Sumathi, Sai. (2009). Computational Intelligence Paradigms: Theory & Applications Using MATLAB: CRC.
  • Thomas, J. K. and Zhang, H. (2002). “Inventory Changes and Future Returns” Review of Accounting Studies. No. 7, PP.163-187
  • Takagi, T., & Sugeno, M. (1985). Fuzzy Identification of Systems and its Applications to Modeling and Control. Systems, Man and Cybernetics, IEEE Transactions on(1),PP.116-132.
  • Zhang, G.P. (2003). Time Series Forecasting using a Hybrid ARIMA and Neural Network Model. Neurocomputing, 50,PP.159-175.